Atomic-resolution imaging in liquid by frequency modulation atomic force microscopy using small cantilevers with megahertz-order resonance frequencies.

نویسندگان

  • T Fukuma
  • K Onishi
  • N Kobayashi
  • A Matsuki
  • H Asakawa
چکیده

In this study, we have investigated the performance of liquid-environment FM-AFM with various cantilevers having different dimensions from theoretical and experimental aspects. The results show that reduction of the cantilever dimensions provides improvement in the minimum detectable force as long as the tip height is sufficiently long compared with the width of the cantilever. However, we also found two important issues to be overcome to achieve this theoretically expected performance. The stable photothermal excitation of a small cantilever requires much higher pointing stability of the exciting laser beam than that for a long cantilever. We present a way to satisfy this stringent requirement using a temperature controlled laser diode module and a polarization-maintaining optical fiber. Another issue is associated with the tip. While a small carbon tip formed by electron beam deposition (EBD) is desirable for small cantilevers, we found that an EBD tip is not suitable for atomic-scale applications due to the weak tip-sample interaction. Here we show that the tip-sample interaction can be greatly enhanced by coating the tip with Si. With these improvements, we demonstrate atomic-resolution imaging of mica in liquid using a small cantilever with a megahertz-order resonance frequency. In addition, we experimentally demonstrate the improvement in the minimum detectable force obtained by the small cantilever in measurements of oscillatory hydration forces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bimodal frequency-modulated atomic force microscopy with small cantilevers.

Small cantilevers with ultra-high resonant frequencies (1-3 MHz) have paved the way for high-speed atomic force microscopy. However, their potential for multi-frequency atomic force microscopy is unexplored. Because small cantilevers have small spring constants but large resonant frequencies, they are well-suited for the characterisation of delicate specimens with high imaging rates. We demonst...

متن کامل

Sensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters

In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...

متن کامل

Non-contact atomic force microscopy characterization of micro-cantilevers and piezo electric transducers with frequencies up to the tens of MHz

We investigated the use of the non-contact atomic force microscopy (NCAFM) technique for evaluating high frequency mechanical vibrations. We demonstrated a clear resonance frequency (fres) of ∼11.8MHz measured from a 0.25 cm2 piece Si placed on top of a driven PZT and probed by an AFM cantilever.We also showed that the probe cantilever in the NCAFM was able to follow the envelope of a Si on PZT...

متن کامل

Wideband low-noise optical beam deflection sensor with photothermal excitation for liquid-environment atomic force microscopy.

I developed a wideband low-noise optical beam deflection sensor with a photothermal cantilever excitation system for liquid-environment atomic force microscopy. The developed sensor has a 10 MHz bandwidth and 4.7 fm/sq.rt.Hz deflection noise density in water. The theoretically limited noise performance (i.e., the noise level limited only by the photodiode shot noise) has been achieved in liquid...

متن کامل

Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions

We have developed a liquid-environment frequency modulation atomic force microscope FM-AFM with a low noise deflection sensor for a wide range of cantilevers with different dimensions. A simple yet accurate equation describing the theoretical limit of the optical beam deflection method in air and liquid is presented. Based on the equation, we have designed a low noise deflection sensor. Replace...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 23 13  شماره 

صفحات  -

تاریخ انتشار 2012